Evaluation of the WHO algorithm for TB screening in HIV-infected children

NYIENYA, H LESLIE, C MWACHARI 1, CR COHEN 1, L DILLABAUGH 1, 2

Family AIDS Care and Education Services (FACES), Research Care and Training Program (RCTP),
Kenya Medical Research, Kisumu, Kenya; University of California San Francisco, San Francisco, California, United States of America; Centre for Respiratory Disease Research, Kenya Medical Research Institute, Nairobi, Kenya

Background

- The optimal approach to screening HIV-infected infants and children for pulmonary tuberculosis (TB) remains uncertain
- Current World Health Organization (WHO) guidelines recommend a symptom-based screening approach to exclude active TB and identify those in need of further investigation

Objectives

To describe the performance of the WHO algorithms to exclude or diagnose TB using clinical diagnosis as the proxy gold standard

TB in Kenya

- > 13th of the 22 highest TB burden countries in the world
- > 10-15% of cases are children < 15yrs of age
- > 44% overall HIV co-infection rate among TB cases (69% Nyanza Province)

Method

- ➤ A prospective cohort study was conducted between 2009-2010 at three Family AIDS Care and Education Services (FACES) supported sites in Kisumu and Nairobi, Kenya
- FACES is a PEPFAR-funded comprehensive HIV prevention, care and treatment program based primarily in Nyanza Province Kenya
- TB was diagnosed using the Kenya TB Programme 2008 TB diagnostic guidelines for children
- TB evaluation included symptom screen (clinical history), physical exam, CXR, tuberculin skin test (TST) and scoring using a modified Keith Edwards score chart
- TB cases were used to determine specificity, sensitivity, negative predictive value (NPV) and positive predictive value (PPV) of the WHO algorithms

Kenya TB Programme Diagnosis 2008

FEATURES	SCORE
Positive smear	7
Tubercle in biopsy	7
Contact with person suspected or confirmed TB	2
Tuberculin test results equal or more than 15mm	
(>5mm HIV-infected)	3
Enlarged painless lymph node +/- sinus present	3
Night sweats, unexplained fever, no response to anti-malarial	2
Abnormal CXR	2
Malnutrition not improving with 4 weeks of treatment	3
Angle deformity of the spine	4
Firm non fluid, non traumatic joint swelling	3
Unexplained abdominal swelling or ascites	3
Change in temperament, convulsions, or coma lasting ≥ 48	3
Less than 2yrs	I
BCG vaccination given	-1
Total	

INTERPRETATION:

- ≥ 7: definitelyTB
- > 5 6: TB probable, may justify treatment
- > 3 4: TB possible, requires further investigations
- \geq 2: TB unlikely

WHO TB Screening Algorithms 2010

Unlikely to have TB

- Children living with HIV who DO NOT have
 - Poor weight gain
 - > Fever
 - Current cough

May have TB

- Children living with HIV who have ANY ONE of the following
 - Poor weight gain
- Fever
- Current cough
- Contact history with TB

WHO. Guidelines for intensified tuberculosis case-finding and isoniazid preventive therapy for people living with HIV in resource constrained settings. Geneva, Switzerland. 2011.

Results

- ➤ Of the 690 HIV-infected children screened for TB with a median age of 6.4 years, (IQR 4.0 9.5), 65 (9%) were diagnosed with TB
- The WHO screen to rule out TB had a sensitivity of 78.5% and NPV of 95.0%
- The WHO screen for possible TB had a sensitivity of 87.7% and specificity of 38.2%, PPV 12.9%
- ➤ Adding TST and replacing cough of any duration with cough >2 weeks did not significantly alter the performance of the positive screening algorithm
- ➤ Addition of an abnormal chest radiograph led to an increased sensitivity of 95.4% and specificity of 34.7%

Table 1. PTB cases compared to WHO Algorithms

WHO Rule out TB YES NO Positive on I or more 51 362 Negative on all I4 263 WHO Possible TB Positive on I or more 57 386 Negative on all 8 239 Add TST Positive on I or more 57 386 Negative on all 8 239 Add CXR Positive on I or more 62 408 Negative on all 3 217		-	8
Positive on I or more 51 362 Negative on all 14 263 WHO Possible TB Positive on I or more 57 386 Negative on all 8 239 Add TST Positive on I or more 57 386 Negative on all 8 239 Add CXR Positive on I or more 62 408	Screen	ТВ	
Negative on all 14 263 WHO Possible TB Positive on I or more 57 386 Negative on all 8 239 Add TST Positive on I or more 57 386 Negative on all 8 239 Add CXR Positive on I or more 62 408	WHO Rule out TB	YES	NO
WHO Possible TB Positive on I or more 57 386 Negative on all 8 239 Add TST Positive on I or more 57 386 Negative on all 8 239 Add CXR Positive on I or more 62 408	Positive on I or more	51	362
Positive on I or more 57 386 Negative on all 8 239 Add TST Positive on I or more 57 386 Negative on all 8 239 Add CXR Positive on I or more 62 408	Negative on all	14	263
Negative on all 8 239 Add TST Positive on I or more 57 386 Negative on all 8 239 Add CXR Positive on I or more 62 408	WHO Possible TB		
Add TST Positive on I or more 57 386 Negative on all 8 239 Add CXR Positive on I or more 62 408	Positive on I or more	57	386
Positive on I or more 57 386 Negative on all 8 239 Add CXR Positive on I or more 62 408	Negative on all	8	239
Negative on all 8 239 Add CXR Positive on I or more 62 408	Add TST		
Add CXR Positive on I or more 62 408	Positive on I or more	57	386
Positive on I or more 62 408	Negative on all	8	239
	Add CXR		
Negative on all 3 217	Positive on I or more	62	408
	Negative on all	3	217

Table 2. Sensitivity analysis of WHO algorithms

	Sensitivity	Specificity	PPV	NPV
WHO rule out TB	78.5%	42.1%	12.4%	95.0%
WHO possible TB	87.7%	38.2%	12.9%	96.76%
Add TST	87.7%	38.2%	12.9%	96.8%
Add CXR	95.4%	34.7%	13.2%	98.6%

Conclusion

- These results show that the WHO screening algorithms perform well for excluding TB
- However, the WHO approach shows poor specificity and low PPV for diagnosing cases of TB
- Limited access to chest radiograph and poor performance of TST and sputum testing present serious barriers to improved TB diagnosis in HIV-infected children in low resource settings

Acknowledgements

This study was supported by the Center for AIDS Prevention Studies, National Institutes of Health Fogarty International Clinical Research Fellowship, and the Steinberg Gift Fund

