

Background

- Timely diagnosis of infant HIV infection is essential for antiretroviral therapy initiation, yet about 50% of motherinfant pairs are lost to follow-up during the postpartum period.
- We aimed to evaluate real-world effectiveness of an efficacious two-way theory-based text messaging system (TextIT) in western Kenya.

Mapping the TextIT strategy onto stages of translational epidemiology

Methods

- In a pragmatic, cluster randomized, stepped-wedge we randomly allocated 10 clinics to immediate, and 10 to delayed implementation
- We used modified Poisson regression with robust variance estimation to estimate the relative risk and 95% confidence intervals (CI)
- Generalized estimating equations were applied on individual-level data to account for clustering by site

Text messaging for retention in PMTCT: a stepped-wedge cluster-randomized trial

Thomas A. Odeny¹, James P. Hughes², Elizabeth A. Bukusi¹, Eliud Akama^{1,2}, Elvin Geng³, King Holmes², R. Scott McClelland² ¹Kenya Medical Research Institute, Kenya, ²University of Washington, USA, ³University of California San Francisco, USA

Phase 2 intervention (N=20 health facilities)

Maternal baseline demographic a	and clinical characterist	ics.	
3. o.p	SMS (N=1,764)	Control (N=751)	
	N (%)	N (%)	
Maternal age (years)			
<18	29 (1.6)	17 (2.3)	
18-24	569 (32.3)	257 (34.2)	
25-34	983 (55.7)	406 (54.1)	
35+	183 (10.4)	71 (9.5)	
Employed	388 (22)	211 (28.1)	
Education			
None	248 (14.1)	54 (7.2)	
Primary	1113 (63.1)	536 (71.4)	
Secondary	321 (18.2)	138 (18.4)	
Post-secondary	82 (4.6)	23 (3.1)	
Married	1600 (90.7)	697 (92.8)	
First pregnancy	171 (9.7)	86 (11.5)	
Most recent CD4 cell count (cells/µL)			
<200	143 (8.1)	61 (8.1)	
200-349	303 (17.2)	152 (20.2)	
350-500	390 (22.1)	180 (24)	
500+	775 (43.9)	311 (41.4)	
Receiving ART	1740 (98.6)	747 (99.5)	

W UNIVERSITY of WASHINGTON

Results

Infant characteristics at birth		
	SMS (N=1,684) N (%)	Control (N=695) N (%)
Gestational age at delivery (weeks), median (IQR)	39 (37–41)	39 (36–41)
Live births (vs. stillbirths)	1,629 (96.7)	675 (97.1)
Female	842 (47.7)	328 (43.7)
Birth weight (kg), median (IQR)	3.2 (3.0–3.5)	3.2 (3.0–3.5)
Delivery at health facility (vs. home)	1508 (85.5)	621 (82.7)
Exclusive breastfeeding (vs. other)	1,577 (89.4)	653 (87)

* IQR=inter-quartile range

Effect of SMS on infant HIV testing and maternal postpartum retention									
Outcome	SMS	Control	Unadjusted RR (95% CI)	p- value	Adjusted * RR (95% CI)	p- value			
Infant HIV testing	1,466/1,613 (90.9%)	609/713 (85.4%)	1.07 (1.02-1.11)	0.002	1.03 (0.97-1.10)	0.3			
Maternal postpartum retention	1,548/1,725 (89.7%)	571/747 (76.4%)	1.18 (1.03-1.34)	0.01	1.12 (0.97-1.30)	0.1			

* adjusted for intervention time period and randomization stratum; control group as reference; RR=relative risk

Conclusion

- A greater proportion of infants in the intervention group received HIV testing compared with the control group, but the difference was small, and not statistically significant
- There was a non-significant increase in maternal postpartum retention in the intervention periods
- Despite the lack of a significant effect of the intervention, key lessons emerged, both for strengthening PMTCT and for implementation research in general

CROI 2018 Poster #818